EngineeringIndustry 4.0Manufacturing

Renesas launches microprocessor for industrial equipment

Renesas recently launched the RZ/T2H, a high-performance microprocessor for industrial equipment. Thanks to its powerful application processing and real-time performance, the RZ/T2H is capable of high-speed, high-precision control of industrial robot motors for up to 9 axes. It supports a variety of network communications including Industrial Ethernet on a single chip. The MPU targets industrial controller equipment such as programmable logic controllers (PLCs), motion controllers, distributed control systems (DCSs), and computerised numerical controls (CNCs).

With the growing demand for unmanned and labour-saving manufacturing, industrial robots such as vertically articulated robots, and industrial controller equipment are being deployed to accelerate automated production.

The Renesas RZ/T2H MPU combines all the functionality and performance required for developing these applications. While industrial systems traditionally required multiple MPUs or a combination of field programmable gate arrays (FPGAs) to control these applications, the RZ/T2H MPU can now meet all the requirements on a single chip. This reduces the number of components and saves time and costs of FPGA program development.

“We have enjoyed outstanding market success with RZ/T2M and RZ/T2L,” said Daryl Khoo, Vice President of Embedded Processing 1st Business Division at Renesas. “The RZ/T2H builds on that momentum, allowing our industrial customers to leverage their existing design assets while addressing even more innovative, demanding industrial motor control and Linux applications. Our customers have been particularly impressed that the RZ/T2H enables them to implement a 9-axis motor control all on just one chip!”

The RZ/T2H is equipped with four Arm Cortex-A55 application CPUs with a maximum operating frequency of 1.2GHz. For external memory, it supports 32-bit LPDDR4-3200 SDRAM. Two Cortex-R52 CPUs with a maximum operating frequency of 1 GHz handle the real-time processing, with each core equipped with a total of 576KB of high-capacity tightly coupled memory (TCM).

This enables high CPU- and memory-intensive tasks such as running Linux applications, robot trajectory generation, and PLC sequence processing, to be executed on a single chip. At the same time, the RZ/T2H can handle fast and precise real-time control such as motor control and Industrial Ethernet protocol processing.

The RZ/T2H has four Ethernet ports, three Gigabit Ethernet MAC (GMAC), plus an Ethernet switch. It also supports EtherCAT, PROFINET, EtherNet/IP, OPC UA, and the next-generation Time-Sensitive Networking (TSN) standard. The combination of these Ethernet switches and GMAC allows the MPU to support multiple Industrial Ethernet controllers and devices, providing flexibility to adapt to a wide range of controller requirements, such as upper-layer Ethernet communications.

The RZ/T2H comes with the Renesas Flexible Software Package (FSP), as with all Renesas MPUs, together with a Linux package that comes with long term support. An out-of-the-box multi-axis motor control evaluation solution is available including inverter boards for driving 9-axis motors, a multi-axis motor control software package, and Motion Utility Tool (a motor control software tool). Sample protocols for industrial Ethernet and software PLC package are also included to kick-start system development.

“As industrial equipment continues to evolve, these systems increasingly require more complex functions and performance,” said Micael Borgefeldt, Product Manager at IAR Systems. “Including the latest RZ/T2H MPU from Renesas, we empower the developers to unlock flexible application configurations across 32-bit MCUs and 64-bit high-end MPUs multi-core environments. Our IAR development solution enables engineers to accelerate next-generation industrial innovation, streamlining development and boosting efficiency like never before.”

There’s plenty of other editorial on our sister site, Electronic Specifier! Or you can always join in the conversation by commenting below or visiting our LinkedIn page.

Leave a Reply

Your email address will not be published. Required fields are marked *